

Redblade: Miami University's Multi-functional

Autonomous Robot

Students: Richard Marcus, James Morton, Robert Cole
Advisors: Dr. Yu Morton, Dr. Peter Jamieson

Miami University

BIOGRAPHY

Richard Marcus is a senior at Miami University studying
Electrical and Computer Engineering. His research interests
include signal processing and waveform design, specifically
in GNSS areas. Richard plans to pursue a master's degree
after completing his undergraduate work at Miami.

James Morton is a junior at Miami University studying
Electrical Engineering and Computer Science at Miami
University. His research interests consist of algorithmic
development for computational biology applications. After
completing a bachelor’s degree at Miami, James plans to
pursue a PhD in Computational Biology.

Robert Cole is a second year master's student in Miami
University's Electrical and Computer Engineering
Department. His research is in autonomous indoor navigation
using an ultra-wideband radar and a robot's odometry. After
graduation, Bob plans to pursue a PhD in robotics and
navigation.

Dr. Peter Jamieson is an assistant professor in the department
of Electrical and Computer Engineering at Miami University.
His Ph.D. was granted from the University of Toronto. His
research focuses on FPGA architecture and CAD.

Dr. Yu (Jade) Morton is a professor of Electrical Engineering
at Miami University of Ohio. She received her PhD in
Electrical Engineering from Penn State University and was a
post-doctoral research fellow at the University of Michigan.
Her current research interests are advanced GNSS receivers,
ionosphere effects on GPS performances, and non-GPS RF
navigation sensors.

ABSTRACT

Redblade is a multi-functional autonomous robot with two
seasonal configurations which allow it to plow snow in the
winter and mow grass in the summer. We are currently on
the 6th generation of the Redblade platform which is an
updated version of last year's platform with completely

redesigned software, four-wheel drive, obstacle avoidance,
and new navigation algorithms. This report presents the
design and implementation of the Redblade mechanical
platform, sensor components, software architecture, control
algorithm, and safety systems.

INTRODUCTION

Autonomous robots capable of performing many functions
with accuracy and reliability in a timely manner are highly
desired in modern society. Redblade is designed as an
expandable host to perform in multiple roles. It represents
the next stage evolution of a multi-functional autonomous
robot since it is able to compete in both autonomous
snowplowing during the ION Autonomous Snowplow
Competition[1], autonomous lawn mowing during the ION
Robotic Lawn Mower Competition[2], and autonomous
navigation in the Intelligent Ground Vehicle Competition[3].
Redblade has been competing since the inception of both
ION competitions starting with the ION Robotic Lawn
Mower Competition in 2004 followed by the ION
Autonomous Snowplow Competition in 2011. This paper
describes Redblade’s mechanical platform, sensor
electronics, software architecture, control algorithms, and
safety mechanisms that make autonomous operation possible,
specifically focusing on the snowplowing application.
Redblade's objective is to compete and win the 4th Annual
Autonomous Snowplow Competition.

More information, pictures, videos, and news articles can be
found at www.muredblade.com[4].

TOP LEVEL REQUIREMENTS

An important step in engineering design is defining the top
level requirements for the system being developed. This
ensures that each necessary function that a system must
perform is given the appropriate amount of consideration.

Table 1 presents a summary of the top level requirements for
Redblade.

Requirement
Specification

Component Used Component
Accuracy

Position Accuracy:
< 15 cm

Topcon:
HiPer Lite Plus

DGPS

MicroStrain:
3DM-GX3-25

US Digital:
E7P wheel encoders

Static: 3mm
horizontal

RTK: 10mm
Heading Accuracy:

< 5o/min
Static: ± 0.5°
Dynamic: ± 2.0°

Obstacle pos.
accuracy:
< 0.5 m

SICK:

LMS-200 Lidar

100o field of
vision, 0.25o
increments

Top speed:
 1.5 m/s

RoboteQ:
AX2850

NPC Robotics:
NPC-B81HT

Velocity
Resolution:
14.25mm/s

Vehicle
Dimensions:

< 2 m

80/20 aluminum bar:
In-house

N/A

E-Stop Distance:
< 1m

Mechanical Platform:
In-house

Test results:
<0.5m

Table 1: Summary table detailing the top-level requirements for the
accuracy of each component.

Additional requirements include the need for a higher amp-
hour power supply, a dependable mechanical platform,
enhanced control algorithm, and a CPU capable of handling
an intense computational burden. These are discussed later
in the report.

SNOWPLOW VEHICLE DESIGN

This section describes the overall mechanical design of
Redblade. We will discuss plowing strategy, mechanical
design, navigation system design, guidance system design,
control system design, software design, and system
integration.

A. PLOWING STRATEGY

We have implemented two different plowing strategies that
take advantage of our new platform’s strengths; one strategy
for the single straight ‘I’-shape and another for the triple
straight ‘I’-shape’. With four wheel drive our lateral traction
has improved significantly and there is now a very small risk
of the robot sliding from a lateral force on the front of the

plow at the competition depth of 5-10cm of snow. Thanks to
this improved traction we don’t have to rely as much on our
PID correcting for very large heading errors and we can
angle the plow more steeply to push snow more efficiently.
However, even with 7.72 horsepower from our new NPC
motors[5], it is possible that plowing too much snow at once
can cause the robot drift radically off-path, which is difficult
to correct for. Breaking up our strategy into several passes
will reduce the strain on the control algorithm.

Before the robot can move, we survey the corners of
whichever field we are currently on and record these points
in latitude & longitude. These points are then converted to an
ENU local coordinate system using the bottom right corner
point of Figure 1 as the (0,0) point (our convention, we could
use any corner point). Based on the corner points, waypoints
for the robot are calculated and generated within the
boundaries of the surveyed field.

For the single straight ‘I’-shape path a two-pass strategy is
preferred because it halves the load that the motors have to
push, reducing the possibility of wheels sliding. On each pass
we align the inside edge of the robot over the center line to
ensure that no snow is left behind. Depending on wet or icy
conditions, the robot can be programmed to make more
passes by joining the original path at the “Merge Point”, seen
in Figure 1, in order to ensure all snow is completely
removed at the cost of additional time.

Figure 1: Single straight ‘I’-shape two-pass plowing strategy (left), Triple
straight ‘I’-shape four-pass plowing strategy (right).

In order to avoid the obstacle in the snow field temporary
waypoints are added to the front of the waypoint queue that
plow around the pole. These waypoints are added whenever
the obstacle is detected to be in the path between the previous
waypoint and the next waypoint

Similar to our first strategy, for the triple straight ‘I’-shape
path we have chosen a solution to reduce the load of snow
that has to be pushed by implementing a four-pass plowing
strategy, shown in Figure 1. Through our testing, we have
decided to start plowing from the outside and working our
way towards the middle so the robot pushes a manageable
amount of snow each time.

B. SNOWPLOW VEHICLE DESIGN

Redblade’s mechanical platform consists of four snow-style
drive wheels for traction in the front and rear, and an
aluminum chassis with polycarbonate paneling that houses
the electrical systems. An overview of the mechanical
platform can be seen in Figures 2 and 3.

The primary material that was used for the chassis is 80/20
aluminum bar. It was chosen for its ease of construction and
the large amount of available mounting materials[6]. Plate
steel was used to mount the plow and electric motors due to
the need for increased strength. Clear polycarbonate
surrounds the chassis to protect the electrical components
from the outside environment and allows us to easily
diagnose problems.

Figure 2: Side profile of Redblade with dimensions shown.

Figure 3: Bottom profile of Redblade with dimensions shown.

This year's major changes include an upgrade to the chassis
to accommodate an additional set of motors. The robot is
now driven by four NPC 24 volt electric high torque motors
with 24:1 reduction gearboxes that can each pull up to 60
amps continuously. This upgrade to four-wheel-drive skid
steering gives the robot much needed traction when pushing a
heavy snow load in icy conditions.

The robot has a total of six 12 volt, 32 amp-hour gel-cell
batteries [7]. Two sets are wired in series to make 24 volt sets
used to power the drive motors. An extra set of fully charged
batteries is always on hand and can be quickly swapped out
using PowerWerx[8] quick disconnects. The last two 12 volt
batteries are wired in parallel for a total of 64 amp-hours and
are used to power the computer, router, safety system, etc.
Figure 4 shows the wiring diagram for Redblade's electrical
system.

Figure 4: Wiring diagram for the Redblade power system. Note: does not
reflect duplicate circuits for second set of motors.

C. NAVIGATION SYSTEM DESIGN

A MicroStrain 3DM-GX3-25 IMU[9] is used to determine the
vehicle heading. It has an adjustable data rate to facilitate
interfacing with different clients. Redblade does not use a
magnetically corrected heading that is offered by this sensor.
This IMU was shown to accumulate approximately 0.1o of
error for every minute of polling time.

The HiPer Lite Plus system is a survey grade dual-frequency
differential GPS receiver system by Topcon[10]. Field tests of
the HiPer Lite Plus near Miami’s Engineering Building with
masking angle at 30o on one side of the sky shows location
accuracy within 2cm as specified by the device manufacturer.
The raw geodetic coordinates given by the HiPer Lite Plus
receiver are converted to an ENU local coordinate system
before being sent to the control algorithm. The origin of the
local coordinate system is in the bottom right corner of
Figure 1, while the robot’s initial heading points to the local
y-axis.

Four US Digital E7MS quadrature optical encoders[11] were
installed all four wheel on the vehicle. Each encoder sends its
signal on two different channels with 90 degree offset. By

using two channels it is possible to determine the direction of
movement if there is no slippage. However there is always
slippage in a skid-steer design and our method for correcting
for this is described later on. When the robot is moving
forward, one channel emits a pulse before the other. The
RoboteQ AX2580[12] motor controller uses these encoders in
its internal feedback loop to ensure consistent speeds on both
motors.

Each sensor may provide inaccurate data depending on the
condition of the robot. This is discussed in more detail in the
Systems Integration and Failure Modes & Recovery Actions
sections.

D. GUIDANCE SYSTEM DESIGN

Our path plan is generated as soon as we survey the field and
convert those survey points into ENU frame. A set of 7

waypoints is generated for the single-I path plan, and 14 for
the triple-I. These points are created based on the
measurements of the snow field given in the ASC 2014
rulebook and the dimensions of our robot so that it does not
run out of bounds. Once all of these points are created, they
are multiplied by a rotation matrix based on the difference in
the angle of the field to ENU to put them in the ENU
coordinate frame. The robot will repeatedly run through all of
these waypoints for any number of iterations depending on
how clean we want to make the snowfield and how much
time we want to spend.

For obstacle detection, we use a SICK Laser Measurement
Sensor (LMS) 200 also known as a LIght Detection And
Ranging (LIDAR) sensor[13]. The LMS 200 is an extremely
accurate 2D distance measurement sensor that can be
interfaced over RS-232 or RS-422. This sensor works by
beaming out a fan of eye-safe laser light off a rotating mirror
and any object that breaks the fan will reflect the laser light
back to the sensor, which can be calculated into a distance
measurement based on the time it takes to come back to the
sensor. The LMS 200 has both a 'mm mode' where it gets
back distance measurements in millimeters (with a detection
range of up to 8.181 meters) and 'cm mode' where it gets
back distance measurements in centimeters (with a detection
range of up to 81.91 meters). It also has the ability of
scanning angular range of 100° with angular resolutions of
1°, 0.5°, and 0.25° (shown in Figure 5 below) and angular
range of 180° with angular resolutions of 1° and 0.5°. The
LMS 200 has a scanning frequency of 75 Hz and response
time of 13-53 ms. The distance measurements from testing
have a systematic error of +/- 15mm and statistical error (1
sigma) of 5 mm.

Figure 5: Measurement range 40° to 140° (view is from above, scan happens
from right to left)

For our setup, we are in 'mm mode' using an angular range of
100° with an angular resolution of 0.25°, which gets us 100°
vision of obstacles in front of our robot with a total of 401
different millimeter range measurements of obstacles less
than 8.181 meters away from the sensor.

As the robot moves between waypoints it performs a
calculation using Lidar range measurements to detect if its
trajectory will intersect with radius R2 around the estimated
position of the obstacle, seen in Figure 6. If the robot detects
that its path will cross this area it creates four temporary
waypoints that lie on the edges of the R1 and R2 circles. R1
is equal to half of the length of the robot plus a small buffer
and R2 is equal to half of the width of the robot plus a small
buffer. Usually point 2 is set to the right side of the pole
because our plow angle performs better on that side, but it
can either be set to either side if the other point would send
the robot out of bounds.

Figure 6: Generation of temporary waypoints to avoid obstacle

As long as the estimated position still lies within the path the
first point will continually update with incoming position
estimates. After reaching the first point the other two
avoidance points are locked in and the robot travels to both of
them before resuming a normal route. If the estimated
position of the pole moves out of the path before it reaches
the first temporary waypoint then it will resume its normal
route.

E. CONTROL SYSTEM DESIGN

Redblade uses a PID control algorithm for navigation
between waypoints [14]. This algorithm adjusts wheel speeds
based on present and past errors. We have two methods of

defining the “error” of our robot. The first method drives
heading error to zero and the second drives the distance from
a line to zero. We are in the process of evaluating the
performance of both approaches.

The PID algorithm starts by accepting a waypoint vector as
its input. This waypoint (xd, yd) will be the destination
waypoint for this method. (x0, y0) is the starting point. Both
of these waypoints are defined in a local ENU reference
frame with the origin being where our robot began. At any
point during its travel between these two waypoints, its
position (x, y) can be found with the GPS, and its heading
(ϴ0) can be found with the IMU. Using this current position
(x, y) and the destination (xd, yd), the desired heading (ϴd)
can be calculated using equation (1):

(1)1)

The difference between ϴd and ϴ0 serves as the error input to
the PID loop. When the KP, KI, and KD coefficients are
selected correctly, they create a signal which drives the
motors and minimizes this error. Figure 7 shows a diagram
of this error.

Figure 7: Diagram of how the PID error in heading is calculated.

The GPS error and IMU error are added together and are the
input to the PID loop as shown in Figure 8.

Figure 8: PID feedback loop using the first method that drives the heading
error to zero.

In order to tune our PID we used the Ziegler Nichols method.
To perform this heuristic first the I and D gains are set to
zero, and then the proportional gain must be increased in
small increments until the robot’s path oscillates constantly
before becoming unstable. Using that gain value (KU) and the
period of oscillation (TU) we were then able to use the
following equations to find our KP, KI, and KD values:

KP = 0.6 * KU (2)

KI = 2 * KP / TU (3)

KD = 0.125 * KP * TU (4)

We considered tuning the PID manually by writing a
simulator, but ultimately felt that it would be too time-
consuming since the Ziegler Nichols method already worked
very well even though it’s not an optimal solution.

F. PROCESSOR & SOFTWARE DESIGN

All system processes are controlled by the onboard PC
running a Linux installation. Communication with this
device is accomplished via direct connection or through an
on-board wireless router. A processor capable of handling a
high computational load is needed. Figure 9 shows the
resulting computer platform. Table 2 details the platforms
specifications.

Figure 9: Redblade's computer platform in its housing. This housing can be
easily removed from the vehicle if necessary.

Component Manufacturer Performance

CPU Intel i7-2600K 3.4GHz quad-core
Memory Corsair XMS 4GB
Solid-State
Drive

Intel 320 Series 80GB

Table 2: Computer platform specifications.

Because Redblade was required to function in a vast range of
environments, weather-proofing was required to ensure safe
and reliable operation. A standard hard drive contains
components that are likely to freeze in low temperatures.
Redblade uses a solid-state drive (SSD) to mitigate this risk.
In addition to having better temperature endurance, the SSD
is able to withstand much higher degrees of vibration and
impact. Power consumption is reduced 85% from
approximately 20 Watts to no more than 1.7 Watts.

The software is mostly written in C or C++ for speed,
although there are some small scripts written in Python that
are not computationally expensive, as well as some testing
scripts in Matlab.

One of the largest changes to Redblade this year was the
introduction of the Robot Operating System (ROS), which is

designed specifically for managing data passing between
varying collections of sensors in a robotics system. All
measurements are taken from sensors by their respective
drivers which time-stamp and publish that data in different
buffers called topics. Processes that need to read these
measurements can subscribe to these topics and grab the most
recent sensor measurement at any given instant in time. The
abilities to communicate easily between any process and
synchronize sensor measurements allow our solutions to be
much more accurate. A visual representation of this
procedure is shown in Figure 10.

Figure 10: System flow chart demonstrating how messages are passed
between software modules and hardware components.

ROS provides suites like rviz for real-time visualization of
sensor data, which we use for viewing and quickly debugging
Lidar data. Tools like ros-bags are available for easily
recording data from any number of sensors that you can
“replay” in order to test multiple algorithms on the same set
of real-world data.

G. SYSTEM INTEGRATION

Redblade features a three-layer system architecture that is
abstracted in Figure 11. The top layer is the navigation and
obstacle avoidance sensor suite. The current generation of
the Redblade navigation sensor suite includes a Topcon
HiPer Lite Plus GPS receiver, a MicroStrain 3DM-GX3-25
inertial sensor, and four optical wheel encoders as part of the
integrated motor drive system.

Figure 11: Three layer system architecture abstraction. Note that the remote
monitoring and control is optional. The latter is disabled during autonomous
operation.

The middle layer is the collection of software that provides
driver functions for the sensors, sensor fusion algorithms,
path planning, and vehicle motion control algorithm. The
bottom layer is the mechanical platform, electronics
hardware, including the motor controller, safety systems,
power supplies, and processors that carry out the software
functions.

Redblade utilizes the three navigation sensors (GPS, IMU,
and optical wheel encoder) to determine its position, heading,
and velocity (PHV). The vehicles PHV information along
with its predetermined destinations are processed by an on-
board computer that implements an Extended Kalman Filter
to improve our PHV before giving the information to the
Proportional-Integral-Derivative (PID) control algorithm to
adjust vehicle heading.

Sensors like the IMU and wheel encoders have very fast
update rates, but they are not very accurate by themselves.
For instance, the heading reported by the IMU will drift over
long periods of time, about 2o per minute. In order to make
the best of all of the sensor measurements to obtain an
accurate estimate of the current position and the positions of
the surrounding obstacles, an extended Kalman Filter is used.
The idea behind an EKF is to model the error of different
information sources and combine readings from these sensors
to obtain a better estimate of the orientation and position then
given by any of the individual sensors.

The Kalman filter contains two main parts: a dynamics model
and a measurement model. The dynamics model can model
the position and error covariance of the robot’s physical
position in the absence of sensor measurements. For our
platform, this model gives information about x and position
in addition to x and y velocity, heading, angular velocity,
angular acceleration and IMU drift bias. The IMU is known
to have an error bias that accumulates over time and in order
to properly model this sensor, its error bias needs to be
included in to the dynamics model. The overall dynamics
model can be formulated as the following set of linear
equations

 (5)

 is the current state of the robot, is a matrix of
coefficients that relate the current state of the robot to the
past state of the robot. is the control input which includes
motor speeds and, is a matrix of coefficients that relate the
current state of the robot to the control inputs. is a random
white Gaussian vector with a known covariance representing
the noise in the robot’s environment.

The measurement model gives information about reliable the
sensor readings are. For our platform, we have three
different measurement equations –one for the IMU, wheel
encoder and GPS measurements. Since the measurement

equations for GPS and IMU are nonlinear, a linear
approximation must be made for these sensor measurements
– a common technique used in the Extended Kalman Filter.
The overall measurement model can be represented by the
following set of linear equations.

 (6)

 is the current set of measurements and is the a matrix
of coefficients that relate the current robots state to the
current set of measurements. is a random white Gaussian
vector with a known covariance representing the noise in the
sensors measurements.

Using the dynamics and sensor models, the propagation
equations can be readily applied as follows:

 ̂

 ̂

 (7)

 ̂

 ̂

 (8)

Where ̂

 signifies the estimate of the current robot’s state
without measurements, ̂

 is the error covariance

representing the uncertainty involved in estimating the robots
current state and is the covariance of the . These
propagation equations are critical for calculating the
estimated position and uncertainty in the absence of
measurements. The presence of measurements, the update
equations can be applied as follows:

 ̂

 ̂

 (9)

 ̂

 ̂

 ̂

 (10)

 ̂

 ̂

 (11)

Where ̂
 denotes the robot’s state and ̂

denotes the robots

uncertainty after an update. It has been shown that this
newly update readings always improve upon existing sensor
readings.

SAFETY SYSTEM

The safety system ensures that the robot ceases operation and
comes to a complete stop within 3 meters. The emergency
safety system on Redblade stops all motion in approximately
0.5 seconds and in less than 1.5 meters. This was in worst
case testing from full speed to a complete stop on an icy
surface. It is accomplished by engaging one of three
emergency kill switches. Two physical kill switches reside
on either end of the vehicle, while the third switch is a remote
handled by the user. The safety system circuitry is shown in
Figure 12. Note that the switches are wired in series to allow
a single switch to cause a complete stop of all motion.

Figure 12: Circuit diagram of Redblade's safety system.

FAILURE MODES & RECOVERY ACTIONS

This section will describe the failure modes and recovery
actions that may arise during vehicle operation. Each mode
and the corresponding recovery action is identified and
explained below.

A. DENIED GPS SOLUTION

The high masking angle of buildings surrounding the
competition site is potentially hazardous to the DGPS system.
Poor DOPs and the higher multipath of the environment can
cause the receiver to lose carrier phase lock on one or more
satellites. This can compromise the expected centimeter
level accuracy of the system.

To solve this problem, the EKF will discard any GPS
measurements that exceed the covariance we set and rely
solely on measurements from the wheel encoders and IMU to
get a relative position until the GPS is picked back up again.
The number of clicks received from the wheel encoders can
be directly translated into distance. Our algorithm receives a
reading from our left and right wheel encoders at 5 Hz and
uses the following formulas to calculate position in our ENU
reference frame. The heading used is the heading measured
by our IMU.

Dist_Traveled = (leftDistance+rightDistance)/2 (12)
newEastPosition+= Dist_Traveled *sin(heading) (13)
newNorthPosition+= Dist_Traveled *cos(heading) (14)

Since this is a relative positioning solution, errors compound
over time. Through tests where we denied the GPS position
to the EKF for periods of up to ten seconds we found the
error from our estimate to the true position to be typically
less than 0.5 m during a GPS outage. This error isn’t large
enough to cause any significant problems with our robot’s
navigation and it is unlikely we will be denied GPS for so
long. Figure 13 shows a graph of the position of the robot
along an arbitrary run. Figure 14 shows the error of the
odometry-calculated position along that run. The largest
error is no more than 0.7 meters.

Figure 13: Plot of the GPS position versus the odometry position along a
run where GPS solutions were denied for 10 second blocks.

Figure 14: Plot of the error between the odometry position versus the known
GPS position over the time of a run where GPS solutions were denied for 10
second blocks.

B. VEHICLE SLIPPAGE

Depending on the consistency of the snow being plowed, it is
possible to incur such load on the plow as to cause the
vehicles wheels to slip. This can result in heading changes
and negatively impacts performance. We can detect slippage
by comparing changes in distance reported by the GPS and
odometry. To do this, we keep a list of previous positions and
calculate the change in distance between the current position
and a position measured one second before from both the
odometry and GPS. If the difference between these two
calculated distances is greater than an experimentally
determined threshold, then we know that the wheels are
slipping. When this happens, we reverse the robot a certain
distance and then continue forward at a faster speed.

C. CURRENT OVERLOAD

With a heavy snow load the amount of current requested by
the drive motors maybe higher than the current rating of the
wires which carry the power to the motors. This overload
situation is handled first by a current limiting parameter in
the configuration of the motor controller. This is set to 120
amps to prevent the motors' current carrying wires from
overheating and causing potential damage to the wires or the
motors.

Two 50-amp circuit breakers were also installed as a form of
redundancy. These breakers are D-curve "slow blow"
because electric motors can have an inrush current several
times larger than their maximum sustainable current[15]. This
slow blow capability allows the breakers to safeguard the
drive system from any damaging overloads, but still allows
for the high initial currents indicative of electric motors.

D. SPEED CONTROL

Redblade is capable of traveling much faster than the
competition rules allow. There are two methods used to
ensure that the vehicle does not exceed competition speeds.
The first is a software limit on the driver that communicates
with the RoboteQ motor controller. This limit does not allow
motor speed values to be sent to the controller if they will
cause excessive speed. Velocity measurements obtained
from the GPS receiver are the second method of speed
control. If the software receives a velocity that exceeds the
speed limit, it decreases wheel speed proportionally to the
amount of excess reported speed.

VEHICLE DESIGN CHALLENGES

A. ROBOT OPERATING SYSTEM (ROS)

In the spring of 2013 team Redblade began converting all
existing software and hardware drivers to be compatible with
ROS, which is a “meta-operating system” that abstracts
control of hardware and communication between different
processes. The majority of our software was transferred into
the protocol that ROS uses, although some hardware drivers
that we use were already created by the ROS community, but
even those were modified.

The learning curve for ROS can be very steep initially but the
community is very helpful and responsive to questions and
issues. Although there was a large initial investment creating
our drivers to work with ROS features, we are now able to
develop much more quickly.

B. OBSTACLE AVOIDANCE & LIDAR

New to all teams this year is the obstacle in the middle of the
snowfield. Because we have competed in other robotics
competitions, like the ION Robotic Lawn Mower
Competition and the IGVC, we are familiar with detecting
and avoiding obstacles. Although we are comfortable using
the Lidar and reading its data, we have never used it in a
winter application before.

Our major challenges in using the Lidar came from errors
due to snow flying around in the air. Because of this added
noise we were having trouble clustering enough points
together to detect the obstacle. In order to rectify this we use

a moving average filter over several frames of Lidar data in
order to filter out any snowflakes.

Another challenging issue we have had is that the position of
the pole can drift up to 0.5 meters away when we are
traveling quickly at extreme angles (> 45o) relative to the
pole. This is caused by the fact that the robot is moving
during the Lidar scan which gives a bias to the ranges.
Thankfully we never travel at such an extreme angle during
the competition so we don’t expect to see such extreme
drifting. However, a small bit of error still remains due to
movement and to compensate for that we average the
estimated position of the pole over time.

C. FOUR-WHEEL DRIVE

Last year Redblade’s biggest mechanical problem was
traction. Our robot was designed with caster wheels in the
back instead of another set of NPC B81HT motors. Because
of the angle of the plow, the robot experiences a great
amount of lateral force on its front, which caused it to rotate
around its set of front wheels, introducing huge heading error
that the PID had to correct for. With our new set of motors
we do not only have the ability to push more snow, but we
have significantly greater lateral traction in the back, keeping
the robot on a straight path when snow pushes on the angled
plow.

However, this solution did not come without a price. This
extra set of motors required its own Roboteq and power
supply, meaning we had to use our back up set of 24v
batteries that we keep inside the robot as a normal supply to
the second pair of motors. Additionally the robot draws much
more current than normal because it is now skid-steer,
meaning that the wheels must skid when turning since all of
our axels are rigid. One problem that we rarely deal with is
mechanical failure due to stress, but recently during normal
testing on dry concrete a motor shaft sheared off cleanly.
When testing on wet, icy, or snowy concrete the skid-steer
behaves much more predictably with less stress on the motors
and we do not expect to see this problem when competing.

Skid steer and the errors it introduces have also caused us to
have to remodel several parts of our software including our
odometry calculations, PID, and motor controllers.

D. EXTENDED KALMAN FILTER

One of the challenges of developing this EKF was obtaining
the dynamics and measurement models. The calculation of
the robot's position given the heading of the robot and the
robot's velocity requires polar to Cartesian transformations,
which are not linear equations. To circumvent this problem,
we developed linear equations to approximate this
transformation using linearization.

Another problem we faced was accounting for IMU bias. The
IMU only gives an angular velocity which can give
information about the heading in the robot's local coordinate
fram. However, we need to know the robot's orientation in
terms of North and East. To estimate this bias, we created
another linear equation in the EKF. For each measurement
update, the bias will be estimated based on the GPS position
and the IMU angular velocity.

Theoretically, the orientation and the position of the robot
can be even further improved if we account for the Lidar
readings and the pole positions in the EKF. Another EKF
was developed to account for these extra sensors to estimate
the position of the poles in addition to the position and
orientation of the robot. However, due to time constraints,
we couldn't thoroughly test this EKF and didn't incorporate it
into the final design.

COMMERCIALIZATION & IMPLEMENTATION

Table 3 below is a detailed breakdown of the primary costs
associated with the build of Redblade.

Component Cost

Projected Market

Cost**

80/20 Frame $1,500 $825

Wireless router $50 $15

E7P Optical Encoders $192 $56

Polycarbonate $360 $180

Batteries $660 $330

Sheet of Steel (x2) $60 $34

Computer Hardware $675 $200

RoboteQ motor controller (x2) $990 $292

NPC Robotics 24V right angle

motors (x4) $1,800 $900

MicroStrain IMU 3DM-GX-25 $1,500 $443

Topcon HiPer Lite Plus System $25,000 $7,381

Misc (wire, bolts, fasteners, etc.) $200 $110

SICK LMS-200 LIDAR $5,000 $1,476

Totals $37,987 $12,242

Market Cost After Mark-up $18,363

Profit to Manufacturer $6,121

Table 3: The primary costs associated with the build of Redblade.

The table above shows the total cost to produce Redblade in a
market environment assuming a manufacturer can obtain
parts for roughly 50% of their retail prices. The costs also
take into account a depreciation of 10% per year for

electronic components and a 10% increase in cost per year
for metals (over a period of 5 years).

A commercially available Redblade unit would be available
with a permanently installed base station, only requiring a
one-time survey of the property with the detachable GPS
receiver in order to define the operating boundaries. If a
movable tripod is used to hold the base station, a 15-minute
recalibration is required every time the tripod is moved.

The onboard software will automatically calculate an
optimized path plan with adjustable settings like path

overlap. Additionally, OmniSTAR[16] (a virtual base station)
subscriptions are available to operate the robot without the
base station, which have position accuracy within 10
centimeters compared to the 2 centimeter accuracy of the
local base station. Based on our testing, any navigation
solution accurate within 15 cm would be sufficient for our
EKF to correct reliably.

CONCLUSIONS & RECOMMENDATIONS

This iteration of Redblade is the most robust platform to date.
It is able to function autonomously as a snowplow and also a
lawnmower. This ability has been achieved through a
navigation sensor suite, including a DGPS receiver, IMU,
and wheel encoders, an Extended Kalman filter, a PID-based
control algorithm, and an in-house mechanical platform.
Several failure modes have been taken into consideration and
recovery actions have been implemented to ensure robust
performance.

The more long-term impact of this project is the valuable
learning experience gained by the students working on the
team. Students learned trouble shooting, managing deadlines
under a tight schedule, and interfacing with parts and supply
sources. They also learned specialized technical skills
through this complicated project that required interfacing
multiple components. Additionally, Redblade has been an
excellent outreach and promotional platform for Miami
University's Engineering programs. The Redblade team
members contributed to numerous outreach activities both on
campus.

ACKNOWLEDGMENTS

The Redblade team would like to thank the Institute of
Navigation Satellite Division for sponsoring the ASC and for
the ION North Star for organizing the competition. The team
received funding support from Miami University Office for
Advancement of Research and Scholarship, School of
Engineering and Applied Science Dean’s Office, and the
Department of Electrical and Computer Engineering.
Additionally, the team appreciates the technical guidance and
support from Mr. Jeff Peterson from Miami University as
well as the efforts of Mrs. Michele Lea for her administrative
support. We would also like to sincerely thank all of our new

sponsors. The Topcon HiPer Lite Plus RTK system and
Topcon B110 receivers were acquired through a sponsorship
with Topcon Industries. The wheels and tires were
generously provided by another sponsor, Kauffman Tire. A
third sponsor, NPC Robotics Inc., gave us four B81HT
motors and a cash donation of one thousand dollars. We are
also grateful for the labor that Miami University’s
instrumentation lab has donated in order to make us
expensive custom fittings.

REFERENCES

[1] McNally, B., M. Stutzman, C. Korando, J. Macasek, C.

Mantz, S. Miller, Y. Morton, S. Campbell, J. Leonard,
“The Miami Red Blade: An Autonomous Lawn Mower,”
Proc. 2004 ION Annual Meeting, pp. 538-542.

[2] R. Wolfarth, S. Taylor, A. Wibowo, B. Williams, Y.
Morton, P. Jamieson, "Redblade: Miami University's
Multi-Functional Autonomous Robot," 2011 ION
International GNSS Conference.

[3] IGVC, “The 21th Annual Intelligent Ground Vehicle
Competition,” 2013, retrieved from http://www.
igvc.org.

[4] “Redblade: Miami University’s Multi-Functional
Autonomous Robot,” 2013, retrieved from
http://www.muredblade.com.

[5] NPC-B81, “NPC-B81HT High Torque Geared Motor,”
The Robot Market Place, 2013, retrieved from
http://www. robotmarketplace.com.

[6] 80/20 Inc., "T-Slotted Framing," 80/20 Inc., 2005,
retrieved from http://www.8020.net/T-Slot-1.asp.

[7] Deka, "Solar Photovoltaic Batteries,” Deka East Penn
Manufacturing Co. Inc., retrieved from
www.dekabatteries.com.

[8] PowerWerx, "Anderson Powerpole & SB Multipole
Series Sets," PowerWerx, retrieved from
http://www.powerwerx.com.

[9] MicroStrain, "Technical Product Overview: 3DM-GX3-
25," MicroStrain, retrieved from http://microstrain.com.

[10] Topcon, "HiPer Lite +," Topcon, 2010, retrieved from
www.topconpositioning.com.

[11] US Digital, “E7P OEM Optical Kit Encoder”, US
Digital, 2012, retrieved from http://www.usdigital.com.

[12] RoboteQ, Inc., “AX2550 AX2850 Dial Channel High
Power Digital Motor Controller User's Manual,” 2007,
RoboteQ, retrieved from www.roboteq.com.

[13] SICK Inc, “LMS200 Laser Measurement Systems,”
2012, SICK Inc, retrieved from www.sick.com.

[14] Wikipedia contributors, “PID Controller,” 2012,
Wikipedia, The Free Encyclopedia, retrieved from
http://en.wikipedia.org/wiki/PID_controller.

[15] Wikipedia contributors, “Inrush Current,” 2011,
Wikipedia, The Free Encyclopedia, retrieved from
http://en.wikipedia.org/wiki/Inrush_current.

[16] OmniSTAR, “Leader in Differential GNSS Solutions
Worldwide,” 2013, retrieved from http://www.
omnistar.com.

